How can we control the coronavirus pandemic? - Adam Kucharski - The TED Interview - Transcript

As the threat of COVID-19 continues, infectious disease expert Adam Kucharski answers five key questions about the novel coronavirus, providing necessary perspective on its transmission, how governments have responded and what might need to change about our social behavior to end the pandemic.

Question 1: What does containment mean when it comes to outbreaks?

问题1:我们应该怎样控制住流行病的蔓延?

Containment is this idea that you can focus your effort on control very much on the cases and their contacts. So you’re not causing disruption to the wider population, you have a case that comes in, you isolate them, you work out who they’ve come into contact with, who’s potentially these opportunities for exposure and then you can follow up those people, maybe quarantine them, to make sure that no further transmission happens. So it’s a very focused, targeted method, and for SARS, it worked remarkably well. But I think for this infection, because some cases are going to be missed, or undetected, you’ve really got to be capturing a large chunk of people at risk. If a few slip through the net, potentially, you’re going to get an outbreak.

对疫情的控制指的是集中精力控制住确诊病例和与他们有接触的人。这样就不会引起人群大规模的混乱,一发现确诊病例,就将他们进行隔离,找出与他们有过接触的人,存在被感染可能性的人,然后持续跟进这群人,或者将他们进行隔离,确保疫情不会进一步蔓延。所以这是一种针对性很强的方法,这种方法对控制非典(SARS)来说很奏效。但我认为对于这次的感染,因为有些病例不会被发现和检测到,就得注意一大群存在被感染风险的人。如果有漏网之鱼,那么就会面临疫情爆发的潜在风险。

Question 2: If containment isn’t enough, what comes next?

问题2:如果光控制疫情还不够的话,我们下一步应该做什么?

In that respect, it would be about massive changes in our social interactions. And so that would require, of the opportunities that could spread the virus so these kind of close contacts, everybody in the population, on average, will be needing to reduce those interactions potentially by two-thirds to bring it under control. That might be through working from home, from changing lifestyle and kind of where you go in crowded places and dinners. And of course, these measures, things like school closures, and other things that just attempt to reduce the social mixing of a population.

那样的话,我们的社交方式需要进行巨大改变。那包括,减少所有可能导致病毒传播的机会,像是近距离接触,平均而言,每个人就得减少大约三分之二这种近接触的机会才能有效控制疫情传播。可以通过在家办公,改变生活方式,不去拥挤的场所与餐厅来实现。当然了,像是关闭学校和其他的措施,只能做到尽量避免人群密集接触。

Question 3: What are the risks that we need people to think about?

问题3:我们需要考虑到哪些可能被传染的风险?

It’s not just whose hand you shake, it’s whose hand that person goes on to shake. And I think we need to think about these second-degree steps, that you might think you have low risk and you’re in a younger group, but you’re often going to be a very short step away from someone who is going to get hit very hard by this. And I think we really need to be socially minded and think this could be quite dramatic in terms of change of behavior, but it needs to be to reduce the impact that we’re potentially facing.

重要的不只是你和哪些人握了手,还有那些人会和哪些人握手。我认为我们应该考虑下这些第二阶段的步骤,你也许会觉得你被感染的风险很低,你比较年轻,但你通常会离那些一旦得病就将面临致命风险的人很近。正因如此,我认为我们应具有社会意识,这将导致我们的行为模式产生重大变化,但为了减少我们可能面临的负面影响,这些是必须要做到的。

Question 4: How far apart should people stay from each other?

问题4:我们该和他人保持多远的距离?

I think it’s hard to pin down exactly, but I think one thing to bear in mind is that there’s not so much evidence that this is a kind of aerosol and it goes really far – it’s reasonably short distances. I don’t think it’s the case that you’re sitting a few meters away from someone and the virus is somehow going to get across. It’s in closer interactions, and it’s why we’re seeing so many transmission events occur in things like meals and really tight-knit groups. Because if you imagine that’s where you can get a virus out and onto surfaces and onto hands and onto faces, and it’s really situations like that we’ve got to think more about.

要想说出一个具体数字是很困难的,但我认为大家应记住,目前并没有足够证据表明这种包含病毒的气溶胶能传播很远的距离 —— 它理应只能在很短的距离内传播。我并不认为你坐在离另一人几米远的地方病毒还能穿过这么远的距离。我们应该注意的是近距离接触,这是那么多传染案例发生于就餐场所和人员密集的团体中的原因。因为可以想像,在那些地方病毒更容易到达我们手和脸的表面,我们更应关注这些情况。

Question 5: What kind of protective measures should countries put in place?

问题5:世界各国应落实哪些预防措施?

I think that’s what people are trying to piece together, first in terms of what works. It’s only really in the last sort of few weeks we’ve got a sense that this thing can be controllable with this extent of interventions, but of course, not all countries can do what China have done, some of these measures incur a huge social, economic, psychological burden on populations. And of course, there’s the time limit. In China, they’ve had them in for six weeks, it’s tough to maintain that, so we need to think of these tradeoffs of all the things we can ask people to do, what’s going to have the most impact on actually reducing the burden.

我认为大家应首先考虑那些被证实有效的措施。我们也是直到前几周才意识到这种病毒在某种程度的国家干预下是可控的,但当然,并不是所有国家都能做到中国所做的那些,有些措施会对全国人民施加 巨大的社会,经济,和心理上的负担。当然了,还要考虑到时间限制。中国仅花了 6 周就控制住了病毒的传播,要做到这点是很难的,所以我们应进行权衡,想想我们能让人民做些什么,哪些措施能最大程度地减少施加于人民身上的负担。

LeetCode - Algorithms - 709. To Lower Case

Problem

709. To Lower Case

Java

bitwise operator

© 10 cool bitwise operator hacks and tricks every programmer must know - Quickly convert character to lowercase and uppercase

1
2
3
4
5
6
7
8
9
class Solution {
public String toLowerCase(String str) {
char[] a = str.toCharArray();
for (int i = 0; i < a.length; i++) {
a[i] = (char) (a[i] | ' ');
}
return String.valueOf(a);
}
}

Submission Detail

  • 8 / 8 test cases passed.
  • Runtime: 0 ms, faster than 100.00% of Java online submissions for To Lower Case.
  • Memory Usage: 36.9 MB, less than 46.27% of Java online submissions for To Lower Case.

jdk

1
2
3
4
5
class Solution {
public String toLowerCase(String str) {
return str.toLowerCase();
}
}

Submission Detail

  • 8 / 8 test cases passed.
  • Runtime: 0 ms, faster than 100.00% of Java online submissions for To Lower Case.
  • Memory Usage: 37.6 MB, less than 6.49% of Java online submissions for To Lower Case.

2

1
2
3
4
5
6
7
8
9
class Solution {
public String toLowerCase(String str) {
String s = "";
for(int i=0;i<str.length();i++) {
s += Character.toLowerCase(str.charAt(i));
}
return s;
}
}

Submission Detail

  • 8 / 8 test cases passed.
  • Runtime: 4 ms, faster than 10.90% of Java online submissions for To Lower Case.
  • Memory Usage: 37.4 MB, less than 6.49% of Java online submissions for To Lower Case.

Sonnet 129

by William Shakespeare

ORIGINAL TEXT

Th’ expense of spirit in a waste of shame
Is lust in action; and till action, lust
Is perjured, murd’rous, bloody, full of blame,
Savage, extreme, rude, cruel, not to trust,
Enjoyed no sooner but despisèd straight,
Past reason hunted; and, no sooner had
Past reason hated as a swallowed bait
On purpose laid to make the taker mad;
Mad in pursuit and in possession so,
Had, having, and in quest to have, extreme;
A bliss in proof and proved, a very woe;
Before, a joy proposed; behind, a dream.
All this the world well knows; yet none knows well
To shun the heaven that leads men to this hell.

MODERN TEXT

The expense of spirit in a waste of shame
Is lust in action; and till action, lust
Is perjured, murderous, bloody, full of blame,
Savage, extreme, rude, cruel, not to trust;

Enjoyed no sooner but despised straight;
Past reason hunted; and no sooner had,
Past reason hated, as a swallowed bait,
On purpose laid to make the taker mad;

Mad in pursuit, and in possession so;
Had, having, and in quest to have, extreme;
A bliss in proof, and proved, a very woe;
Before, a joy proposed; behind, a dream.

All this the world well knows; yet none knows well
To shun the heaven that leads men to this hell.


Greatest common divisor

java

Built-in

1
2
3
4
5
import java.math.BigInteger;

public static long gcd(long a, long b) {
return BigInteger.valueOf(a).gcd(BigInteger.valueOf(b)).longValue();
}

Recursive

To calculate \( gcd(m, n) \), for given values \( 0 \leq m < n\), Euclid’s algorithm uses the recurrence

\(
\begin{align*}
\begin{cases}
gcd(0, n) = n ; \\
gcd(m, n) = gcd(n \hspace{1mm} mod \hspace{1mm} m, m), \hspace{4mm} for \hspace{1mm} m > 0. \\
\end{cases}
\end{align*}
\)

for example, \( gcd(12, 18) = gcd(6, 12) = gcd(0, 6) = 6 \).

1
2
3
4
5
6
7
8
9
public static long gcd(long a, long b) {
if (a == 0)
return b;
if (b == 0)
return a;
if (a > b)
return gcd(b, a % b);
return gcd(a, b % a);
}

non mod

1
2
3
4
5
6
7
8
public static long gcd(long a, long b) {
if (a < b)
return gcd(b, a);
if (b == 0)
return a;
else
return gcd(a - b, b);
}

bit operation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public static long gcd(long a, long b) {
if (a < b)
return gcd(b, a);
if (b == 0)
return a;
else {
if ((a & 1) == 0) {
if ((b & 1) == 0)
return (gcd(a >> 1, b >> 1) << 1);
else
return gcd(a >> 1, b);
} else {
if ((b & 1) == 0)
return gcd(a, b >> 1);
else
return gcd(b, a - b);
}
}
}

references

[趣味数学·益智游戏]魔方

鲁比克教授当年以帮助学生理解3D几何中的空间转动为动机而构想的教学道具却无心插柳地成为有史以来最畅销的机械益智玩具。

  一个外围26个子块的内部铰接构造能使其任意一面都可以随意旋转(任意方向可转90度或半圈)的3×3×3六面体。六个面颜色互异,这个玩具的目标是在经过任意次随机扭转后复原六面单色的状态。这个在20世纪七十年代由匈牙利人艾尔诺•鲁比克发明的机械益智玩具在随后的八十年代期间卖出了数百万个。

  鲁比克魔方的变换总数达

\( \huge \frac{8! * 12! * 3^8 * 2^{12}}{2 * 3 * 2} = 43252003274489856000 \)

(特纳&戈尔德,1985,Schönert)。霍伊使用波利亚-伯恩赛德引理证明了存在针对魔方整体对称性共轭不变的 901083404981813616 种不同变换。

  鲁比克魔方的转动操作内蕴的有限群称为鲁比克群,鲁比克群的凯莱图称为鲁比克图,复原任意颜色组合的魔方所需要的最少转动次数等于鲁比克图的直径(即最长测地线),有时被称为上帝之数。尽管存在从任意颜色组合复原魔方的算法,它们不一定是最优的(即最少的转动次数),计算上帝之数异常困难,早在1995年就已经知道上帝之数的下界(在最坏的情形)是20。直到2010年托马斯•罗基奇等人证明任意颜色组合的魔方都能够在20步内复原[1],从而确立上帝之数为20

另见:

上帝之数,鲁比克钟,鲁比克图,鲁比克群

参考:

  • G.赫尔姆斯,鲁比克魔方
  • D.霍伊,魔方的问题空间/解空间的实际测度
  • 道格拉斯•理查•霍夫斯塔特[2],魔方迷玩转魔方,魔方大师破解魔方,《科学美国人》第244期Metamagical Themas专栏, 20-39页, 1981年3月
  • 道格拉斯•理查•霍夫斯塔特,不可思议的元主题:心灵与模式的追问,第14章,位于纽约的BasicBooks出版社, 1985
  • 赫伯特•科先巴,最优解
  • M.E.拉森,魔方的报复:群论解决方案,美国数学月刊第92期,381-390,1985
  • M.朗里奇,魔方的领域
  • D.L.W.米勒,用最快的搜索算法和简要表解决鲁比克方块
  • J.帕尔默,魔方路线,新科学家第199期,40-43,2008
  • 托马斯•罗基奇,25步足以复原魔方,2008年3月24日
  • 托马斯•罗基奇,22步足以复原魔方,2008年8月12日
  • 托马斯•罗基奇 & 赫伯特•科先巴 & 莫利•戴维森 & 约翰•德斯里奇,上帝之数是20
  • Jaap Scherphuis,Jaap的荟萃益智玩具的专题网页:3×3×3鲁比克方块
  • M.Schoenert,魔方爱好者: 按日期索引
  • M.Schönert,用GAP计算群论方法分析魔方
  • D.Singmaster,鲁比克魔方札记,位于新泽西州Hillside的Enslow出版公司,1981
  • 唐•泰勒,精通鲁比克方块,位于纽约的HRW(Holt, Rinehart, and Winston)教育图书出版公司,1981
  • 唐•泰勒 & 莲妮•赖兰兹,魔方游戏:92个玩法和解法,位于纽约的HRW(Holt, Rinehart, and Winston)教育图书出版公司,1981
  • E.C.特纳 & K.F.戈尔德,鲁比克群,美国数学月刊第92期,617-629,1985

[1] 与四色定理一样,证明上帝之数等于20使用的方法也是求助于现代计算机威力的蛮力法,因此这并不是一个符合美学标准的证明

[2] 侯世达(中文名),曾获得普利策奖的《哥德尔、埃舍尔、巴赫:集异璧之大成》一书的作者


原文:Rubik’s Cube

Lines

by Emily Jane Brontë

I die, but when the grave shall press
The heart so long endeared to thee,
When earthly cares no more distress
And earthly joys are nought to me,

Weep not, but think that I have passed
Before thee o’er a sea of gloom,
Have anchored safe, and rest at last
Where tears and mourning cannot come.

‘Tis I should weep to leave thee here
On the dark ocean sailing drear,
With storms around and fears before,
And no kind light to point the shore.

But long or short though life may be,
‘Tis nothing to eternity:
We part below to meet on high,
Where blissful ages never die.

LeetCode - Algorithms - 509. Fibonacci Number

\( F_n = F_{n-1} + F_{n-2} \)

\( F_0 = 0, F_1 = F_2 = 1 \)

Problem

509. Fibonacci Number

a “toy” problem. It’s easy to understand and maybe surprising that there are many different solutions.

Java

Recursion

1
2
3
4
5
6
7
8
9
10
11
12
class Solution {
public int fib(int N) {
int r=0;
if (N == 0)
r = 0;
if (N == 1)
r = 1;
if (N > 1)
r = fib(N - 1) + fib(N - 2);
return r;
}
}

Submission Detail

  • 31 / 31 test cases passed.
  • Runtime: 14 ms, faster than 5.42% of Java online submissions for Fibonacci Number.
  • Memory Usage: 36.1 MB, less than 5.51% of Java online submissions for Fibonacci Number.

Dynamic Programming

Using dynamic programming in the calculation of the nth member of the Fibonacci sequence improves its performance greatly.

bottom-up approach

1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution {
public int fib(int N) {
if (N == 0)
return 0;
int previousFib = 0, currentFib = 1;
int newFib = 0;
for (int i = 1; i < N; i++) {
newFib = previousFib + currentFib;
previousFib = currentFib;
currentFib = newFib;
}
return currentFib;
}
}
Submission Detail
  • 31 / 31 test cases passed.
  • Runtime: 0 ms, faster than 100.00% of Java online submissions for Fibonacci Number.
  • Memory Usage: 35.8 MB, less than 36.87% of Java online submissions for Fibonacci Number.

2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Solution {
public int fib(int N) {
int r=0, recip1st=0, recip2nd=1;
if (N == 0)
r = 0;
if (N == 1)
r = 1;
for(int i=1; i<N; i++) {
r = recip1st + recip2nd;
recip1st = recip2nd;
recip2nd = r;
}
return r;
}
}
Submission Detail
  • 31 / 31 test cases passed.
  • Runtime: 0 ms, faster than 100.00% of Java online submissions for Fibonacci Number.
  • Memory Usage: 36.6 MB, less than 5.51% of Java online submissions for Fibonacci Number.

top-down approach

1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import java.util.HashMap;
import java.util.Map;

class Solution {
public int fib(int N) {
Map<Integer, Integer> map = new HashMap<Integer, Integer>();
map.put(0, 0);
map.put(1, 1);
map.put(2, 1);
map.put(3, 2);
map.put(4, 3);
map.put(5, 5);
map.put(6, 8);
map.put(7, 13);
map.put(8, 21);
map.put(9, 34);
map.put(10, 55);
map.put(11, 89);
map.put(12, 144);
map.put(13, 233);
map.put(14, 377);
map.put(15, 610);
map.put(16, 987);
map.put(17, 1597);
map.put(18, 2584);
map.put(19, 4181);
map.put(20, 6765);
map.put(21, 10946);
map.put(22, 17711);
map.put(23, 28657);
map.put(24, 46368);
map.put(25, 75025);
map.put(26, 121393);
map.put(27, 196418);
map.put(28, 317811);
map.put(29, 514229);
map.put(30, 832040);
if (!map.containsKey(N))
map.put(N, fib(N - 1) + fib(N - 2));
return map.get(N);
}
}
Submission Detail
  • 31 / 31 test cases passed.
  • Runtime: 0 ms, faster than 100.00% of Java online submissions for Fibonacci Number.
  • Memory Usage: 36 MB, less than 25.69% of Java online submissions for Fibonacci Number.

2

As constraints 0 <= n <= 30

1
2
3
4
5
6
class Solution {
public int fib(int N) {
int[] table = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040};
return table[N];
}
}
Submission Detail
  • 31 / 31 test cases passed.
  • Runtime: 0 ms, faster than 100.00% of Java online submissions for Fibonacci Number.
  • Memory Usage: 35.7 MB, less than 69.84% of Java online submissions for Fibonacci Number.

formula

golden ratio \(\huge \varphi = \frac{1 + \sqrt{5}}{2} \)

\(\LARGE F_n = \frac{\varphi^n-(1-\varphi)^n}{\sqrt{5}} \)

This solution is often used as a standard example of the method of generating functions.

1
2
3
4
5
6
7
class Solution {
public int fib(int N) {
final double SQRT5 = Math.sqrt(5);
Double d = ( Math.pow((1+SQRT5)/2,N)-Math.pow((1-SQRT5)/2,N) )/SQRT5;
return d.intValue();
}
}

Submission Detail

  • 31 / 31 test cases passed.
  • Runtime: 0 ms, faster than 100.00% of Java online submissions for Fibonacci Number.
  • Memory Usage: 36.2 MB, less than 5.51% of Java online submissions for Fibonacci Number.

Why is Euler's phi function multiplicative?

In number theory, Euler’s totient function, also be called Euler’s phi function \( \varphi(n) \) counts the positive integers up to a given integer n that are relatively prime to n.

\( \varphi(1)=1 \)

\( \varphi(mn)=\varphi(m)\varphi(n) \hspace{16 pt} whenever \hspace {8pt} m \bot n \hspace {8pt} i.e. \hspace {8pt} gcd(m, n)=1 \)

Si sint A et B numeri inter se primi et numerus partium ad A primarum sit = a, numerus vero partium ad B primarum sit = b, tum numerus partium ad productum AB primarum erit = ab. - L. Euler

Outline of proof: let A, B, C be the sets of nonnegative integers, which are, respectively, coprime to and less than m, n, and mn; then there is a bijection between A × B and C, by the Chinese remainder theorem.


Concrete Mathematics p144
NUMBER THEORY - Exercises - Warmups - 10 Compute \( \phi(999) \).

\( \phi(p)=p-1 \)

\( \phi(p^k)=p^k-p^{k-1} \)

\( \phi(999)=\phi(3^3 \times 37) \)

\( =\phi(3^3) \times \phi(37) = (3^3-3^2) \times 36 = 648 \)


\( \phi(666) = 216 = 6 \times 6 \times 6 \)